Tuesday, 11 October 2016

math - Laplace Transform of $-e^{-at}u(-t)$


I have found a problem in applying Laplace Transform to $-e^{-at}u(-t)$ I am doing these steps:


$$ = - \int_{-\infty}^{+\infty} e^{-at}u(-t) e^{-st}dt$$ $$ = - \int_{-\infty}^{0} e^{-at} e^{-st}dt$$ $$ = - \int_{-\infty}^{0} e^{-(a+s)t}dt$$ $$ = - [-\frac{1}{a+s} e^{-(a+s)t}]|_{-\infty}^{0}$$ $$ = - [-\frac{1}{a+s} (e^{-(a+s)0}-e^{-(a+s)-\infty})]$$


$$ = - [-\frac{1}{a+s} (1- \infty)]$$


$$ = \infty$$ Can anyone help me why it is showing like that.I check it on internet and all the books are showing the answer is $\frac{1}{s+a}$




No comments:

Post a Comment

readings - Appending 内 to a company name is read ない or うち?

For example, if I say マイクロソフト内のパートナーシップは強いです, is the 内 here read as うち or ない? Answer 「内」 in the form: 「Proper Noun + 内」 is always read 「ない...