According to the Proof :
\begin{align} X_n &= \sum_{k=0}^{N-1}x_ke^{-j\frac{2\pi k n}{N}}\\ X_{N-n} &= \sum_{k=0}^{N-1}x_ke^{-j\frac{2\pi k (N-n)}{N}}\\ &=\sum_{k=0}^{N-1}x_k e^{-j 2\pi k}e^{j\frac{2\pi k n}{N}} \end{align}
Using $\exp(-j2\pi k) = 1 \quad \forall \ k$
\begin{align} X_{N-n} &= \sum_{k=0}^{N-1}x_k e^{j\frac{2\pi k n}{N}}\\ \end{align}
How is $\exp(-j2\pi k) = 1 \quad \forall \ k$ true ? Doesn't it mean $-j2\pi k = 0$ ? But that's not possible right?
No comments:
Post a Comment