Monday, 16 March 2015

fourier transform - Proof of complex conjugate symmetry property of DFT


According to the Proof :



\begin{align} X_n &= \sum_{k=0}^{N-1}x_ke^{-j\frac{2\pi k n}{N}}\\ X_{N-n} &= \sum_{k=0}^{N-1}x_ke^{-j\frac{2\pi k (N-n)}{N}}\\ &=\sum_{k=0}^{N-1}x_k e^{-j 2\pi k}e^{j\frac{2\pi k n}{N}} \end{align}


Using $\exp(-j2\pi k) = 1 \quad \forall \ k$



\begin{align} X_{N-n} &= \sum_{k=0}^{N-1}x_k e^{j\frac{2\pi k n}{N}}\\ \end{align}



How is $\exp(-j2\pi k) = 1 \quad \forall \ k$ true ? Doesn't it mean $-j2\pi k = 0$ ? But that's not possible right?



Answer



Hint:


According to Euler's formula we have $$e^{-j2\pi k}=\cos(2\pi k)-j\sin(2\pi k)=\ldots$$


No comments:

Post a Comment

readings - Appending 内 to a company name is read ない or うち?

For example, if I say マイクロソフト内のパートナーシップは強いです, is the 内 here read as うち or ない? Answer 「内」 in the form: 「Proper Noun + 内」 is always read 「ない...