Sunday, 17 January 2016

convolution - Ideal BandPass Filter


Let suppose


x(t)=$\sum\limits_{k=-∞}^∞ R(t-kT)$


$R(t) = \begin{cases}1 &[0,2T] \\ 0 & \text{otherwise} \end{cases}$


x(t) is the input to an ideal bandpass filter with $\text{BandWidth} = \dfrac{1}{(2T)}$
and $\text{Center Frequency} = \dfrac{L}{(T)}$



How can i find the output y(t). any help will be appreciated.




No comments:

Post a Comment

readings - Appending 内 to a company name is read ない or うち?

For example, if I say マイクロソフト内のパートナーシップは強いです, is the 内 here read as うち or ない? Answer 「内」 in the form: 「Proper Noun + 内」 is always read 「ない...