Let suppose
x(t)=$\sum\limits_{k=-∞}^∞ R(t-kT)$
$R(t) = \begin{cases}1 &[0,2T] \\ 0 & \text{otherwise} \end{cases}$
x(t) is the input to an ideal bandpass filter with $\text{BandWidth} = \dfrac{1}{(2T)}$
and $\text{Center Frequency} = \dfrac{L}{(T)}$
How can i find the output y(t). any help will be appreciated.
No comments:
Post a Comment