Tuesday, 11 August 2015

quantum chemistry - How to interpret orbital transition in TDDFT?


Consider the following TDDFT run with GAMESS:


!   File created by the GAMESS Input Deck Generator Plugin for Avogadro
$BASIS GBASIS=N311 NGAUSS=6 $END
$CONTRL SCFTYP=RHF RUNTYP=ENERGY TDDFT=EXCITE DFTTYP=B3LYP $END

$CONTRL ICHARG=0 MULT=1 $END
$TDDFT NSTATE=9 $END
$STATPT OPTTOL=0.0005 NSTEP=99 METHOD=RFO UPHESS=MSP HSSEND=.T. $END
$SYSTEM MWORDS=1000 PARALL=.TRUE. $END
$SCF DIRSCF=.T. DIIS=.T. DAMP=.T. $END

$DATA
Title
C1
O 8.0 0.00000 -1.27900 0.00300

C 6.0 -0.00000 -0.05800 0.00100
C 6.0 1.29700 0.69100 -0.00000
C 6.0 -1.29800 0.69000 -0.00000
H 1.0 1.35900 1.32900 -0.90600
H 1.0 1.35900 1.33200 0.90300
H 1.0 2.15700 -0.01300 0.00100
H 1.0 -2.15700 -0.01400 0.00100
H 1.0 -1.35900 1.32900 -0.90600
H 1.0 -1.35900 1.33200 0.90300
$END


From this we obtain the following part of the output. (The complete calculation can be found here.) How can we interpret the orbital transitions, in terms of for example $\mathrm{n}\to\sigma^*$ or $\pi\to\pi^*$?


enter image description here



Answer



To visualise the orbitals of your calculation, use a program of your choice. For Gamess, there are a few options availabile. I use ChemCraft and Molden, and they work quite well. Here is a compilation of some with the former mentioned:


orbitals of acetone


You can further use the summary to identify the most interesting, strongest transitions:


                          SUMMARY OF TDDFT RESULTS

STATE ENERGY EXCITATION TRANSITION DIPOLE, A.U. OSCILLATOR

HARTREE EV X Y Z STRENGTH
0 A -193.0290234748 0.000
1 A -192.8724089055 4.262 0.0001 0.0000 0.0001 0.000
2 A -192.7831335626 6.691 0.4051 -0.0004 0.0000 0.027
3 A -192.7317175333 8.090 0.0018 -0.0976 0.0001 0.002
4 A -192.7220472153 8.353 -0.4522 -0.0001 0.0000 0.042
5 A -192.7210047911 8.382 -0.0121 0.0000 -0.0006 0.000
6 A -192.7176816741 8.472 -0.0001 -0.0013 0.0724 0.001
7 A -192.7167365427 8.498 0.0006 -0.0002 0.0075 0.000
8 A -192.6964881601 9.049 0.0029 -0.3152 0.0008 0.022

9 A -192.6862850361 9.326 -0.0022 1.1274 -0.0093 0.290

For the calculated 9 states that is the last one, with an oscillator strength of 0.290. Now skip back one section to where you find:


      -------------------
SINGLET EXCITATIONS
-------------------

Look for excited state number 9:


 STATE #   9  ENERGY =    9.326387 EV
OSCILLATOR STRENGTH = 0.290423

LAMBDA DIAGNOSTIC = 0.561 (RYDBERG/CHARGE TRANSFER CHARACTER)
SYMMETRY OF STATE = A
EXCITATION DE-EXCITATION
OCC VIR AMPLITUDE AMPLITUDE
I A X(I->A) Y(A->I)
--- --- -------- --------
9 17 0.137515 0.018404
15 17 0.694034 -0.078753
13 18 -0.085768 -0.006093
14 19 -0.059549 -0.004510

16 19 -0.289828 0.018031
15 20 0.051487 0.010566
11 21 0.053380 0.009416
13 21 -0.060120 -0.009392
16 22 -0.607830 0.005676
11 24 0.052546 0.012226
13 25 -0.039117 -0.008987
16 26 0.112895 0.016712
16 30 -0.041659 -0.014274
16 33 0.052880 0.019973

16 36 -0.031783 -0.011699
13 40 -0.030352 -0.013004

There you find the orbital transitions. You can also have a look at the amplitudes to identify the most dominant one. In this case it is probably 15 to 17 and therefore corresponds to $\pi\to\pi^*$.


The more complicated the molecules get, the more confusing will this process be. Also the higher the level of theory, the more transitions you will need to consider. In this case Natural Transition Orbitals will certainly become very helpful, see Richard L. Martin, J. Chem. Phys., 2003, 118, 4775-4777.


No comments:

Post a Comment

readings - Appending 内 to a company name is read ない or うち?

For example, if I say マイクロソフト内のパートナーシップは強いです, is the 内 here read as うち or ない? Answer 「内」 in the form: 「Proper Noun + 内」 is always read 「ない...